cert

Machine Learning Crash Course

Course Overview Begin exploring the extraordinary world of digital marketing today, and take your initial steps towards the career you …

Machine Learning Crash Course

Machine Learning Crash Course

Original price was: $417.25.Current price is: $35.30.

TAKE THIS COURSE

are
are
are
clender

1 Year Access

teacher

3 Students

durantion

10 hours, 8 minutes

Gift this course

Course Overview

Begin exploring the extraordinary world of digital marketing today, and take your initial steps towards the career you have always dreamed of through learning the most up-to-date digital marketing strategies.

This comprehensive course mainly focuses on teaching you practical techniques for promoting your goods, service or business through practising different digital platforms such as website promoting, email marketing, Youtube and Video Marketing, Copywriting, Blogging & SEO, Facebook, Twitter, Instagram, LinkedIn, Periscope and Pinterest, Podcasting, Google Analytics and Google Plus, etc.

To sum up, this Machine Learning Crash Course is suitable for anyone with little knowledge of digital marketing and wishing to develop their online selling skills further or refresh their skills.

Learning Outcomes

Whether you are an aspiring professional or a complete beginner, this course will improve your expertise and boost your CV with key skills and an accredited certification attesting to your knowledge. 

Entry Requirement

    • This course is available to all learners of all academic backgrounds.
    • Learners should be aged 16 or over to undertake the qualification.
    • Some basic understanding of the English language and numeracy.  

Certification

After you have successfully completed the course, you will be able to obtain an Accredited Certificate of Achievement. You can, however also obtain a Course Completion Certificate following the course completion without sitting for the test. Certificates can be obtained either in hardcopy at the cost of £29 or in PDF format at the cost of £19.

    • PDF certificate’s turnaround time is 24 hours, and for the hardcopy certificate, it is 3-9 working days

Why choose us?

      • Affordable, engaging & high-quality e-learning study materials;
      • Tutorial videos/materials from the industry-leading experts;
      • Study in a user-friendly, advanced online learning platform;
      • Efficient exam systems for the assessment and instant result;
      • The UK & internationally recognised accredited qualification;
      • Access to course content on mobile, tablet or desktop from anywhere, anytime;
      • The benefit of career advancement opportunities;
      • 24/7 student support via email.

Career path

Machine Learning Crash Course is a useful qualification to possess and would be beneficial for any related profession or industry. 

Course Curriculum

Course Overview & Table of Contents
Course Overview & Table of Contents 00:09:00
Introduction to Machine Learning - Part 1 - Concepts , Definitions and Types
Introduction to Machine Learning – Part 1 – Concepts , Definitions and Types 00:05:00
Introduction to Machine Learning - Part 2 - Classifications and Applications
Introduction to Machine Learning – Part 2 – Classifications and Applications 00:06:00
System and Environment preparation - Part 1
System and Environment preparation – Part 1 00:04:00
System and Environment preparation - Part 2
System and Environment preparation – Part 2 00:06:00
Learn Basics of python - Assignment
Learn Basics of python – Assignment 1 00:10:00
Learn Basics of python - Assignment
Learn Basics of python – Assignment 2 00:09:00
Learn Basics of python - Functions
Learn Basics of python – Functions 00:04:00
Learn Basics of python - Data Structures
Learn Basics of python – Data Structures 00:12:00
Learn Basics of NumPy - NumPy Array
Learn Basics of NumPy – NumPy Array 00:06:00
Learn Basics of NumPy - NumPy Data
Learn Basics of NumPy – NumPy Data 00:08:00
Learn Basics of NumPy - NumPy Arithmetic
Learn Basics of NumPy – NumPy Arithmetic 00:04:00
Learn Basics of Matplotlib
Learn Basics of Matplotlib 00:07:00
Learn Basics of Pandas - Part 1
Learn Basics of Pandas – Part 1 00:06:00
Learn Basics of Pandas - Part 2
Learn Basics of Pandas – Part 2 00:07:00
Understanding the CSV data file
Understanding the CSV data file 00:09:00
Load and Read CSV data file using Python Standard Library
Load and Read CSV data file using Python Standard Library 00:09:00
Load and Read CSV data file using NumPy
Load and Read CSV data file using NumPy 00:04:00
Load and Read CSV data file using Pandas
Load and Read CSV data file using Pandas 00:05:00
Dataset Summary - Peek, Dimensions and Data Types
Dataset Summary – Peek, Dimensions and Data Types 00:09:00
Dataset Summary - Class Distribution and Data Summary
Dataset Summary – Class Distribution and Data Summary 00:09:00
Dataset Summary - Explaining Correlation
Dataset Summary – Explaining Correlation 00:11:00
Dataset Summary - Explaining Skewness - Gaussian and Normal Curve
Dataset Summary – Explaining Skewness – Gaussian and Normal Curve 00:07:00
Dataset Visualization - Using Histograms
Dataset Visualization – Using Histograms 00:07:00
Dataset Visualization - Using Density Plots
Dataset Visualization – Using Density Plots 00:06:00
Dataset Visualization - Box and Whisker Plots
Dataset Visualization – Box and Whisker Plots 00:05:00
Multivariate Dataset Visualization - Correlation Plots
Multivariate Dataset Visualization – Correlation Plots 00:08:00
Multivariate Dataset Visualization - Scatter Plots
Multivariate Dataset Visualization – Scatter Plots 00:05:00
Data Preparation (Pre-Processing) - Introduction
Data Preparation (Pre-Processing) – Introduction 00:09:00
Data Preparation - Re-scaling Data - Part 1
Data Preparation – Re-scaling Data – Part 1 00:09:00
Data Preparation - Re-scaling Data - Part 2
Data Preparation – Re-scaling Data – Part 2 00:09:00
Data Preparation - Standardizing Data - Part 1
Data Preparation – Standardizing Data – Part 1 00:07:00
Data Preparation - Standardizing Data - Part 2
Data Preparation – Standardizing Data – Part 2 00:04:00
Data Preparation - Normalizing Data
Data Preparation – Normalizing Data 00:08:00
Data Preparation - Binarizing Data
Data Preparation – Binarizing Data 00:06:00
Feature Selection - Introduction
Feature Selection – Introduction 00:07:00
Feature Selection - Uni-variate Part 1 - Chi-Squared Test
Feature Selection – Uni-variate Part 1 – Chi-Squared Test 00:09:00
Feature Selection - Uni-variate Part 2 - Chi-Squared Test
Feature Selection – Uni-variate Part 2 – Chi-Squared Test 00:10:00
Feature Selection - Recursive Feature Elimination
Feature Selection – Recursive Feature Elimination 00:11:00
Feature Selection - Principal Component Analysis (PCA)
Feature Selection – Principal Component Analysis (PCA) 00:09:00
Feature Selection - Feature Importance
Feature Selection – Feature Importance 00:06:00
Refresher Session - The Mechanism of Re-sampling, Training and Testing
Refresher Session – The Mechanism of Re-sampling, Training and Testing 00:12:00
Algorithm Evaluation Techniques - Introduction
Algorithm Evaluation Techniques – Introduction 00:07:00
Algorithm Evaluation Techniques - Train and Test Set
Algorithm Evaluation Techniques – Train and Test Set 00:11:00
Algorithm Evaluation Techniques - K-Fold Cross Validation
Algorithm Evaluation Techniques – K-Fold Cross Validation 00:09:00
Algorithm Evaluation Techniques - Leave One Out Cross Validation
Algorithm Evaluation Techniques – Leave One Out Cross Validation 00:05:00
Algorithm Evaluation Techniques - Repeated Random Test-Train Splits
Algorithm Evaluation Techniques – Repeated Random Test-Train Splits 00:07:00
Algorithm Evaluation Metrics - Introduction
Algorithm Evaluation Metrics – Introduction 00:09:00
Algorithm Evaluation Metrics - Classification Accuracy
Algorithm Evaluation Metrics – Classification Accuracy 00:08:00
Algorithm Evaluation Metrics - Log Loss
Algorithm Evaluation Metrics – Log Loss 00:03:00
Algorithm Evaluation Metrics - Area Under ROC Curve
Algorithm Evaluation Metrics – Area Under ROC Curve 00:06:00
Algorithm Evaluation Metrics - Confusion Matrix
Algorithm Evaluation Metrics – Confusion Matrix 00:10:00
Algorithm Evaluation Metrics - Classification Report
Algorithm Evaluation Metrics – Classification Report 00:04:00
Algorithm Evaluation Metrics - Mean Absolute Error - Dataset Introduction
Resources-Machine Learning Crash Course 00:00:00
Algorithm Evaluation Metrics - Mean Absolute Error
Algorithm Evaluation Metrics – Mean Absolute Error – Dataset Introduction 00:06:00
Algorithm Evaluation Metrics - Mean Square Error
Algorithm Evaluation Metrics – Mean Square Error 00:03:00
Algorithm Evaluation Metrics - R Squared
Classification Algorithm Spot Check – Logistic Regression 00:12:00
Classification Algorithm Spot Check - Logistic Regression
Classification Algorithm Spot Check – Linear Discriminant Analysis 00:04:00
Classification Algorithm Spot Check - Linear Discriminant Analysis
Classification Algorithm Spot Check – K-Nearest Neighbors 00:05:00
Classification Algorithm Spot Check - K-Nearest Neighbors
Classification Algorithm Spot Check – Naive Bayes 00:04:00
Classification Algorithm Spot Check - Naive Bayes
Classification Algorithm Spot Check – CART 00:04:00
Classification Algorithm Spot Check - CART
Classification Algorithm Spot Check – Support Vector Machines 00:05:00
Regression Algorithm Spot Check - Linear Regression
Regression Algorithm Spot Check – Linear Regression 00:08:00
Regression Algorithm Spot Check - Ridge Regression
Regression Algorithm Spot Check – Ridge Regression 00:03:00
Regression Algorithm Spot Check - Lasso Linear Regression
Regression Algorithm Spot Check – Lasso Linear Regression 00:03:00
Regression Algorithm Spot Check - Elastic Net Regression
Regression Algorithm Spot Check – Elastic Net Regression 00:02:00
Regression Algorithm Spot Check - K-Nearest Neighbors
Regression Algorithm Spot Check – K-Nearest Neighbors 00:06:00
Regression Algorithm Spot Check - CART
Regression Algorithm Spot Check – CART 00:04:00
Regression Algorithm Spot Check - Support Vector Machines (SVM)
Regression Algorithm Spot Check – Support Vector Machines (SVM) 00:04:00
Compare Algorithms - Part 1 : Choosing the best Machine Learning Model
Compare Algorithms – Part 1 : Choosing the best Machine Learning Model 00:09:00
Compare Algorithms - Part 2 : Choosing the best Machine Learning Model
Compare Algorithms – Part 2 : Choosing the best Machine Learning Model 00:05:00
Pipelines : Data Preparation and Data Modelling
Pipelines : Data Preparation and Data Modelling 00:11:00
Pipelines : Feature Selection and Data Modelling
Pipelines : Feature Selection and Data Modelling 00:10:00
Performance Improvement: Ensembles - Voting
Performance Improvement: Ensembles – Voting 00:07:00
Performance Improvement: Ensembles - Bagging
Performance Improvement: Ensembles – Bagging 00:08:00
Performance Improvement: Ensembles - Boosting
Performance Improvement: Ensembles – Boosting 00:05:00
Performance Improvement: Parameter Tuning using Grid Search
Performance Improvement: Parameter Tuning using Grid Search 00:08:00
Performance Improvement: Parameter Tuning using Random Search
Performance Improvement: Parameter Tuning using Random Search 00:06:00
Export, Save and Load Machine Learning Models : Pickle
Export, Save and Load Machine Learning Models : Pickle 00:10:00
Export, Save and Load Machine Learning Models : Joblib
Export, Save and Load Machine Learning Models : Joblib 00:06:00
Finalizing a Model - Introduction and Steps
Finalizing a Model – Introduction and Steps 00:07:00
Finalizing a Classification Model - The Pima Indian Diabetes Dataset
Finalizing a Classification Model – The Pima Indian Diabetes Dataset 00:07:00
Quick Session: Imbalanced Data Set - Issue Overview and Steps
Quick Session: Imbalanced Data Set – Issue Overview and Steps 00:09:00
Iris Dataset : Finalizing Multi-Class Dataset
Iris Dataset : Finalizing Multi-Class Dataset 00:09:00
Finalizing a Regression Model - The Boston Housing Price Dataset
Finalizing a Regression Model – The Boston Housing Price Dataset 00:08:00
Real-time Predictions: Using the Pima Indian Diabetes Classification Model
Real-time Predictions: Using the Pima Indian Diabetes Classification Model 00:07:00
Real-time Predictions: Using Iris Flowers Multi-Class Classification Dataset
Real-time Predictions: Using Iris Flowers Multi-Class Classification Dataset 00:03:00
Real-time Predictions: Using the Boston Housing Regression Model
Real-time Predictions: Using the Boston Housing Regression Model 00:08:00
Resources
Resources-Machine Learning Crash Course 00:00:00

Course Ratings

N.A

ratings
  • 5 stars0
  • 4 stars0
  • 3 stars0
  • 2 stars0
  • 1 stars0

No Ratings found for this course.

How Do Our Courses Work?

Purchase and payment

Add your chosen course to your basket. Once you’ve added all the courses you need.

Course access

Add your chosen course to your basket. Once you’ve added all the courses you need.

Certificate

Add your chosen course to your basket. Once you’ve added all the courses you need.

Continued support

Add your chosen course to your basket. Once you’ve added all the courses you need.

Dive into an enriching online learning journey with Alpha Academy. We pride ourselves on offering a diverse range of courses tailored to your needs. Elevate your expertise or discover a new passion. With Alpha Academy, your pursuit of knowledge has no bounds.

Contact

For Business

Certificate validator

Payment methods possible

© ALPHA ACADEMY IS A PART OF ADAMS ACADEMY INC. LTD.

top
0
    0
    Your Cart
    Your cart is emptyReturn to Shop

    WINTER SALE :: ALL COURSES for $64.09 / year

    ADD OFFER TO CART

    No more than 50 active courses at any one time. Membership renews after 12 months. Cancel anytime from your account. Certain courses are not included. Can't be used in conjunction with any other offer.

      Apply Coupon